جستجو
منو بسته
خبرخوان

نوشته های بلاگ برچسب خورده با  "سیلیکون"

نظر ها  (0) اتلاف انرژی در سلول خورشیدی

نور مرئی تنها قسمتیاز طیف الکترومغناطیسی است. تابش الکترومغناطیسی تک رنگ نیست واز طیف وسیعی از طول موجهای مختلف تشکیل شده و به همین ترتیب از سطوح انرژی تشکیل شده است.

نور را می‌توان به طول موج های مختلف تقسیم کرد که ما می‌توانیم به شکل رنگین کمان ببینیم. از آنجایی که نوری که به سلول خورشیدی برخورد می‌کند فوتون هایی در طیف وسیعی از انرژی دارد، نتیجه می‌گیریم که برخی از آنها انرژی کافی برای تغییر جفت الکترون- حفره ندارند. آنها به سادگی از سلول عبور می‌کنند، انگار که سلول شفاف باشد. هنوز فوتون های دیگر انرژی زیادی دارند. تنها یک مقدار معینی از انرژی که در الکترون ولت ها (eV) اندازه گیری شده و توسط مواد سلول خورشیدی (حدود 1.1 الکترون ولت برای سیلیکون بلوری) تعریف شده است، ضروری است که به الکترون آزاد ضربه زنند. ما این را شکاف نوار انرژی از ماده می‌نامیم. اگر فوتون دارای انرژی بیشتری نسبت به مقدار مورد نیاز باشد، پس انرژی اضافی از بین میرود. (اگرچه فوتون دو برابر انرژی مورد نیاز را داشته باشد و بتواند بیش از یک جفت الکترون حفره ایجاد کند، اما تاثیر آن قابل توجه نیست.) این دو اثر به تنهایی می‌تواند باعث از دست دادن حدود 70 درصد از انرژی تابشی در سلول خورشیدی ما شود.

چرا ما نمی‌توانیم مواد با فاصله شکافی واقعاً کم را انتخاب کنیم، برای اینکه بتوانیم بیشتر از فوتون ها استفاده کنیم؟ متاسفانه، شکاف باند ما قدرت (ولتاژ) میدان الکتریکی ما را تعیین می‌کند و اگر آن خیلی کم باشد، بنابراین آنچه که ما با ساختن جریان اضافی (با جذب فوتون بیشتر)  می‌سازیم، ما با داشتن یک ولتاژ کوچک از دست می‌دهیم. به یاد داشته باشید که توان حاصل ضرب ولتاژ در جریان است. شکاف باند مطلوب، متعادل کننده این دو اثر، حدود 1.4 الکترون ولت برای یک سلول ساخته شده از یک ماده تنها است.

ما تلفات این چنینی نیز باز هم داریم. الکترونهای ما باید از یک طرف سلول به طرف دیگر از طریق یک مدار بیرونی عبور کنند. ما می‌توانیم لایه زیرین را با یک فلز هادی پوشش دهیم، که هدایت و رسانایی خوبی را اجازه می‌دهد، اما اگر ما به طور کامل لایه رویی را با فلز را پوشش دهیم، فوتون ها نمی‌توانند از طریق هادی مات و غیرشفاف عبور کنند و ما تمام جریان خود را از دست می‌دهیم (در برخی از سلول ها، رساناهای شفاف در بالای سطح استفاده می‌شوند، اما نه در همه سلولها). اگر ما اتصالات را فقط در طرفهای سلول خود قرار دهیم، بنابراین الکترونها باید مسیری بسیار طولانی را برای رسیدن به اتصالات طی کنند. به یاد داشته باشید، سیلیکون نیمه هادی است یعنی سیلیکون تقریباً به خوبی یک فلز هادی برای عبور جریان الکتریکی نیست. مقاومت درونی آن  نسبتاً بالا است و مقاومت بالا به معنای تلفات زیاد است. برای به حداقل رساندن این تلفات، سلول ها معمولاً توسط شبکه اتصالات فلزی پوشیده می‌شوند که فاصله ای را که الکترون ها مجبور به حرکت هستند را کوتاه می‌کند در حالی که تنها بخش کوچکی از سطح سلول را پوشش می‌دهد. حتی اگر برخی از فوتونها توسط شبکه مسدود شده باشند،که نمیتوانند این فوتونها بیش از حد کوچک هم باشند، مقاومت آنها بسیار بالا خواهد بود.

حالا ما می‌دانیم که چگونه یک سلول خورشیدی کار می‌کند، در مقاله بعدی با هم میبینیم که مواردی برای ساختن خانه با تکنولوژی فتوولتائیک لازم است.

نظر ها  (0) ساختمان سلول خورشیدی

ساختمان سلول خورشیدی

قبل از این،  ما دو قطعه جداگانه از سیلیکون داشتیم که به صورت الکتریکی خنثی بودند،بخش جالب زمانی شروع میشود که آنها را با هم ترکیب کنیم.  یه این دلیل که بدون یک میدان الکتریکی، سلول کار نخواهد کرد؛ میدان هنگامی‌شکل می‌گیرد که سیلیکون نوع N و نوع P در تماس با هم می‌آیند. ناگهان، الکترون های آزاد در سمت N، تمام حفره های سمت P را مشاهده می‌کنندو به سرعت حرکت می‌کنند تاآنها را پر کنند. حال سوال این است که آیا تمام الکترونهای آزاد تمام حفره های آزاد را پر می‌کنند؟ نه. اگر این کار را انجام دهند، پس آرایش کلی خیلی مفید نخواهد بود. با این حال، درست در محل اتصال، آنها مخلوط می‌شوند و چیزی مانند یک مانع را شکل می‌دهند، و سخت تر و سخت تر می‌شود برای الکترون ها تا از طرف N عبور کنند و به طرف  P حرکت کنند.  در نهایت، تعادل به دست می‌آید و ما میدان الکتریکی منفصل از دو طرف داریم.

این میدان الکتریکی مانند یک دیود عمل می‌کند، بصورتی که اجازه می‌دهد (و حتی هل می‌دهد) الکترون ها از سمت P به طرف N حرکت کنند، اما نه از راه های دیگر که در اطراف آنها وجود دارد. این مثل تپه است - الکترونها می‌توانند به راحتی به پایین تپه برسند (به سمت N)، اما نمیتوانند از آن بالا روند (به طرف P).

هنگامی‌که نور، در شکل فوتون ها، به سلول خورشیدی ما برخورد می‌کند، انرژی فوتون ها باعث می‌شود که جفت های الکترون-حفره از هم جدا شوند. هر فوتون با انرژی کافی معمولاً یک الکترون را دقیقاً آزاد می‌کند و به همین ترتیب منجر می‌شود یک حفره آزاد نیز بوجود آید. اگر این اتفاق به اندازه کافی نزدیک به میدان الکتریکی رخ دهد و یا اگر الکترون آزاد و حفره آزاد در محدوده تاثرگذاری شان منحرف شوند، میدان، الکترون را به سمت N و حفره به طرف P ارسال خواهد کرد. این موجب شکست بیشتر در انرژی الکتریکی ساکن می‌شود و اگر یک مسیر جریان بیرونی را فراهم کنیم، الکترون ها از طریق مسیر به سمت P جریان می‌یابند تا با حفره هایی که میدان الکتریکی به آنجا می‌فرستد یکی شوند و در طول مسیر برای ما کار می‌کنند. جریان الکترون ها جریان الکتریسیته را فراهم می‌کند و میدان الکتریکی سلول ولتاژ را ایجاد می‌کند. با جریان و ولتاژ هر دو، ما توان داریم که حاصل ضرب این دو است.

تعداد اجزای دیگری نیز وجود دارند قبل از اینکه ما بتوانیم واقعاً از سلول خورشیدی خود استفاده کنیم. سیلیکون یک ماده بسیار براق است که می‌تواند فوتون ها را قبل از اینکه کارشان را انجام می‌دهند، به فضاهای دورتر منعکس کند.

یک پوشش ضد انعکاس برای کاهش تلفات آنها روی لایه سیلیکون قرار داده می‌شود. مرحله نهایی نصب چیزی است که سلول را از عناصر دیگر محافظت کند که اغلب یک صفحه پوشش شیشه ای و یا رزینی است. ماژول های PV معمولا با اتصال چندین سلول جداگانه به یکدیگر برای رسیدن به سطوح مفید ولتاژ و جریان، و قرار دادن آنها در یک فریم فلزی محکم که با ترمینالهای های مثبت و منفی کامل شده است، ساخته می‌شوند.

سلول PV ما چقدر از انرژي نور خورشيد را جذب مي کند؟ متأسفانه، احتمالا خیلی زیاد نباشد. برای مثال، در سال 2006، بیشتر پنل های خورشیدی فقط تا میزان کارایی 12 تا 18 درصد رسیده بودند. پیشرفته ترین سیستم پنل خورشیدی در سال گذشته سرانجام  40 درصد رانددمان انرژی خورشیدی را به خود اختصاص داد پس چرا به حداکثر رساندن انرژی جذب شده از روز آفتابی یک چالش است؟

 

نظر ها  (0) چگونه سیلیکون یک سلول خورشیدی می سازد

چگونه سیلیکون یک سلول خورشیدی می‌سازد ؟

 سیلیکون خواص شیمیایی خاصی ، به خصوص در فرم بلوری خود دارد. یک اتم سیلیکون دارای 14 الکترون است که در سه لایه مختلف قرار گرفته اند. دو لایه اول - که به ترتیب دو و هشت الکترون دارند - کاملاً پر هستند. با این حال، فقط نیمی‌از لایه بیرونی با چهار الکترون پوشیده شده است. یک اتم سیلیکون همیشه به دنبال راه هایی برای پر کردن آخرین لایه خود است و برای انجام این کار، آن با چهار اتم نزدیک به خودش آن در الکترونها شریک می‌شود. مثل اینکه هر اتم با همسایگانش با یک دست متصل می‌شود، مگر در این مورد که هر اتم چهار دست دارد تا به چهار همسایه وصل شود. این همان چیزی است که ساختار بلوری را شکل می‌دهد و این ساختار برای این نوع از سلول های فوتو ولتاییکphotovoltaic - PV بسیار مهم است.

تنها مشکل این است که سیلیکن بلوری خالص، برخلاف هادی های بسیار رسانا مانند مس که هدایت الکتریکی خوبی دارند، یک هادی ضعیف الکتریسیته است چرا که هیچکدام از الکترونهای آن برای جابجایی و حرکت آزاد نیستند. برای حل این مسئله، سیلیکون موجود در سلول خورشیدی ناخالصی هایی دارا است. اتم های دیگر به صورت هدفمند با اتم های سیلیکون مخلوط می‌شوند، که کمی‌ روش کار را تغییر می‌دهد. ما معمولاً در مورد ناخالصی ها به عنوان چیز نامطلوب فکر می‌کنیم، اما در این مورد، سلول خورشیدی ما بدون آنها کار نمی‌کند. سیلیکون را با اتم فسفر در اینجا و آنجا، شاید یک فسفر برای هر میلیون اتم سیلیکون، در نظر بگیرید. فسفر دارای پنج الکترون در لایه بیرونی خود است، نه چهار تا. فسفر هنوز هم با اتمهای همسایه سیلیکونی خود پیوند دارد، اما در این مورد، فسفر یک الکترون دارد که هیچ کسی را ندارد تا به آن متصل شود. آن قسمتی از پیوند را شکل نمی‌دهد ، اما یک پروتون مثبت در هسته فسفر وجود دارد که مکان آن را حفظ می‌کند.

هنگامی‌که انرژی به سیلیکون خالص اضافه شود، به عنوان مثال انرژی به صورت گرما اضافه شود، می‌تواند تعدادی از الکترون ها را از پیوندهایشان آزاد کند و آن ها را از اتم های شان خارج کند. یک حفره هر بار در هر مورد به جا گذاشته می‌شود. این الکترونها که حاملهای آزاد نامیده می‌شوند، به طور تصادفی در اطراف شبکه بلوری به دنبال حفره دیگری می‌گردند تا در درون آن بیافتند و یک جریان الکتریکی را حمل کنند. با این حال، این حامل های آزاد بسیار کم در سیلیکون خالص وجود دارند که تعداد کم آنها خیلی مفید واقع نمی‌شود.

اما سیلیکون ناخالص با اتمهای فسفر مخلوط شده، داستان متفاوتی است. آن انرژي بسيار کمتري براي برخورد و ضربه زدن به يکي از الکترونهای اضافي فسفر می‌گیرد، زيرا آنها در یک پیوند با هیچ کدام از اتم های همسايه متصل نیستند. در نتیجه، بیشتر این الکترونها آزاد می‌شوند و ما تعداد بیشتری حاملهای آزاد داریم نسبت به زمانی که در سیلیکون خالص داشتیم. فرآیند اضافه کردن ناخالصی ها به صورت هدفمند، ناخالص سازی نامیده می‌شود و وقتی که فسفر به عنوان ناخالصی برای این منظور مورد استفاده قرار می‌گیرد، سیلیکن حاصل از آن به علت تعدد الکترون های آزاد، نوع N نامیده می‌شود ("N" برای منفی). سیلیکون ناخالص نوع-  Nبسیار مفید تر از سیلیکون خالص است.

بخش دیگری از یک سلول خورشیدی خاص با عنصر بور ناخالص سازی می‌شود که به جای چهار تا تنها سه الکترون در لایه بیرونی خود دارد، تا به سیلیکون نوع P تبدیل شود. به جای داشتن الکترون آزاد، نوعP  حفره های آزاد بسیاری دارد و شارژ مخالف (مثبت) را حمل می‌کند.

در قسمت بعد، به آنچه اتفاق می‌افتد زمانی که این دو ماده شروع به تقابل می‌کنند، نگاه دقیق تری می‌کنیم.